

Approved for public release; distribution unlimited.

25/950

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

| REPORT DOCUMENTATION                                                                                | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |                                                         |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|
| 1. REPORT NUMBER                                                                                    | 2. GOVT ACCESSION NO.                                          | 3. RECIPIENT'S CATALOG NUMBER                           |  |  |  |  |  |
| NRL Report 8147                                                                                     |                                                                |                                                         |  |  |  |  |  |
| 4. TITLE (and Subtitle)                                                                             |                                                                | 5. TYPE OF REPORT & PERIOD COVERED                      |  |  |  |  |  |
| PHASE-DIFFERENCE PROCESSING INCORPORATING                                                           |                                                                | Interim Report on one phase of a continuing NRL Problem |  |  |  |  |  |
| TIME-ALIGNMENT AND TIME-COMPRES                                                                     | 6. PERFORMING ORG. REPORT NUMBER                               |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
| 7. AUTHOR(s)                                                                                        | 8. CONTRACT OR GRANT NUMBER(4)                                 |                                                         |  |  |  |  |  |
| Wendell L. Anderson                                                                                 |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                         | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |                                                         |  |  |  |  |  |
| Naval Research Laboratory  Washington, D.C. 20375                                                   | NRL Problem S01-61                                             |                                                         |  |  |  |  |  |
| washington, D.C. 20373                                                                              |                                                                | ARPA Order 3874                                         |  |  |  |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                             | 1. CONTROLLING OFFICE NAME AND ADDRESS                         |                                                         |  |  |  |  |  |
| Defense Advanced Research Projects Agency                                                           | August 10, 1977                                                |                                                         |  |  |  |  |  |
| Arlington, Va. 22209                                                                                |                                                                | 13. NUMBER OF PAGES                                     |  |  |  |  |  |
| 14 MONITORING AGENCY NAME & ADDRESS(II differen                                                     | et trom Controlline Office)                                    | 15. SECURITY CLASS. (of this report)                    |  |  |  |  |  |
| MONTECHINO AGENCY NAME & ABBAESS(II division                                                        |                                                                | Unclassified                                            |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                | 15a. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE           |  |  |  |  |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                         |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
| Approved for public release; distribution unlimited                                                 |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered                                                 | in Block 20, if different fro                                  | m Report)                                               |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
| 18. SUPPLEMENTARY NOTES                                                                             |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
| 19. KEY WORDS (Continue on reverse side if necessary at                                             | na laentily by block number)                                   |                                                         |  |  |  |  |  |
| Coherence analysis Correlation processing                                                           |                                                                |                                                         |  |  |  |  |  |
| Phase difference                                                                                    |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
| 20. ABSTRACT (Continue on reverse side if necessary an                                              | d identify by block number)                                    |                                                         |  |  |  |  |  |
| This report describes a system for measur                                                           | ing the instantaneous                                          | phase difference between two signals                    |  |  |  |  |  |
| as a function of time. This system allows the user to apply various time-difference and doppler     |                                                                |                                                         |  |  |  |  |  |
| corrections to the signals in order to obtain minimum (in the least-squares sense) phase difference |                                                                |                                                         |  |  |  |  |  |
| between the signals.                                                                                |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |
|                                                                                                     |                                                                |                                                         |  |  |  |  |  |

# CONTENTS

| INTRODUCTION                                |  |  |      |  |  |  |  |  |  | 1   |
|---------------------------------------------|--|--|------|--|--|--|--|--|--|-----|
| SYSTEM DESCRIPTION                          |  |  |      |  |  |  |  |  |  | 1   |
| Digital System                              |  |  |      |  |  |  |  |  |  | 2   |
| SYSTEM OPERATION                            |  |  |      |  |  |  |  |  |  | 2   |
| Time-Register Alignment Doppler Corrections |  |  |      |  |  |  |  |  |  | 2   |
| CONCLUSIONS                                 |  |  |      |  |  |  |  |  |  | . 3 |
| ACKNOWLEDGMENTS                             |  |  |      |  |  |  |  |  |  | . 5 |
| REFERENCES                                  |  |  |      |  |  |  |  |  |  | . 5 |
| APPENDIX A - Program Listing                |  |  | <br> |  |  |  |  |  |  | . 6 |



## PHASE-DIFFERENCE PROCESSING INCORPORATING TIME-ALIGNMENT AND TIME-COMPRESSION TECHNIQUES

### INTRODUCTION

Coherent processing has proven to be a viable technique in the study of undersea acoustic signals. To be effective, such processing requires the phase coherence between the received signals to be high. That is, the minimum phase difference between the two signals (after corrections for differences in transit times and doppler) must be small in the least-squares sense. Moreover the time-difference and doppler corrections required to achieve the minimum phase difference provide estimates of these parameters for localization and dynamics determination.

This report will examine the problem of correcting for time alignment and time scalefactor between two signals in the measurement of phase difference and describe in general terms a system for implementing these functions.

## SYSTEM DESCRIPTION

The basic technique for measuring the instantaneous phase difference between two signals is illustrated in Fig. 1. The two bandlimited signals are processed through delay networks in order to align the two signals in time register, after which one of the two signals is processed through a time compressor (or expander) to correct for the doppler difference between the two channels. The signals are then fed to an axis-crossover comparator (phase meter) and a duel-trace oscilloscope. The phase difference between the two signals is recorded as a function of time on a Brush stylus recorder.



Fig. 1 - Phase-measurement technique

## **Digital System**

The process was implemented in two steps. In the first step of the process, time delays and time compressions (or expansions) were introduced to the data channels by the use of a PDP-11/40 minicomputer. Each of the digital signals was stored in a contiguous file on the system disk, which allowed the data streams to be accessed by sample number. The time delay for each of the signals is obtained by specifying the starting sample number for each channel. The time alignment between the two signals is varied by changing the starting sample number for the first signal relative to the second. Time is compressed (or expanded) by periodically skipping (or duplicating) samples from the second channel. The new data streams are multiplexed into a single data stream and written onto magnetic tape for processing by the phase meter. A more detailed explanation of the software program to accomplish this first step is given in Appendix A.

#### Axis-Crossover Phase Meter

In the second step of the process the magnetic tape that is generated is used as the signal input for the system shown in Fig. 2. Each record on the magnetic tape is read into one of two buffers. To maintain a continuous flow of data through the system, one buffer is being filled while the other is being read by the demultiplexer. The two demultiplexed data channels are digital-to-analog converted and low-pass filtered. Each channel is then fed to the phase meter. At each positive axis-crossover of the channel 1 signal, a counter in the phase meter is reset, and at each positive axis-crossover of the channel 2 signal the contents of the counter is converted to a voltage which is fed to the strip-chart recorder. (Further details on the axis-crossover phase meter are given in Ref. 1.)



Fig. 2 - Phase-meter system

## SYSTEM OPERATION

The system was tested using a signal with the frequency-modulation pattern illustrated in Fig. 3. (More details on the properties of this frequency function are reported in Ref. 2). In the examples given a signal with  $f_c = 33$  Hz and  $\Delta f = 0.2$  Hz were used. The signals were sampled at 264 Hz.

## Time-Register Alignment

The first area of study was to determine the effect of time register (or time alignment) on the phase-difference pattern of identical signals. Figure 4 illustrates the phase-difference pattern for offsets of 0, 1, 2, 4, and 8 seconds. The 45-degree offset from the center of each plot is the result of the clocking from the demultiplexer. Each sample from channel



Fig. 3 - Source frequency function

2 is displaced 1/2 sample interval (1/8 wave period) after the corresponding sample for channel 1. In this example the phase-difference patterns approximate triangular wave forms, with peak-to-peak excursions directly proportional to the time-register difference.

# **Doppler Corrections**

The system was also used to examine the effect of both time register and doppler alignment on a motional-source signal received at two widely spaced sensors. Since the locations of the source and sensors were known, it was easy to approximately time-align the signals. After the initial time alignment the phase-difference pattern appears as shown in Fig. 5a. The continuous phase migration (360-degree sawtooth wave) is a result of the doppler difference between the two received signals. Over the time interval of 30 minutes (475,200 samples) a cumulative phase difference of about 37-1/4 full periods (298 samples) is noted. To correct for doppler, it is thus necessary to drop a sample every 1595 samples from the second signal. The effect of this correction is shown in Fig. 5b. There is now no net phase movement of the phase difference over the 30-minute interval, but an irregular waveform similar to that shown in Fig. 4 may be noted. This suggests that some time-register difference still exists between the two signals. Figure 5c illustrates the final phase difference between the two signals after they have been properly time aligned. This final alignment indicates that the time difference between channel 2 and channel 1 was 1/2 second smaller than expected and that a doppler compression of 0.000627 (or 0.02069 Hz) existed between the two signals.

The high-frequency (45-degree-sawtooth) component of the phase-difference pattern seen in Figs. 5b and 5c is a result of the discrete manner of correcting for doppler difference. (The spikes in the Fig. 5 phase-difference plots are caused by tape dropouts during the reading of the magnetic tape and should be ignored.)

## CONCLUSIONS

The system described in this report provides a simple and convenient method for measuring the instantaneous phase difference between two signals as a function of both time-register and time-scale-factor (doppler) difference. By examining the phase-difference plots, one can determine the time-register and doppler difference required for minimum phase



Fig. 4 — Phase-difference plots of the signal versus itself



Fig. 5 - Phase-difference patterns of the signal received at separate sensors

difference. In so doing, estimates of the time-register and doppler shift are provided, and an estimate of the maximum phase correlation between the signal channels may readily be derived.

## **ACKNOWLEDGMENTS**

The author is indebted to Dr. Albert A. Gerlach for his many helpful comments and discussions and to Mr. George Nacht, who built and operated the system described in Fig. 2.

The effort on the study was supported by the Defense Advanced Research Projects Agency under ARPA Order 3074.

# REFERENCES

- G. G. Nacht and H. L. Peterson, "A Hybrid Cumulative Phase Difference Meter," Report of NRL Progress, Feb. 1966, pp. 37-38.
- A.A. Gerlach, "Random Frequency Function Generation," NRL Report 7697, Apr. 30, 1974.

# Appendix A PROGRAM LISTING

This appendix describes the assembly-language program which produced the phase-meter input tapes. The actual program is the first five of the six printout pages and runs under the DEC DOS/BATCH system. This program assumes that the data for the two channels have been stored as eight-bit bytes in the contiguous disk files STANO1.DAT and STANO2.DAT respectively. Each of these data files consists of 512-byte records. The program writes the multiplexed data onto a seven-track 556-BPI tape (556 binary digits per inch) with 2000 six-bit-byte records. (Each six-bit byte contains the six most significant bits of a sample.)

As indicated by the program contents, lines 1 through 29 initialize the program. The number of records in each input data file is entered first. This is followed by the number of samples that each data stream is to be delayed. These latter numbers are converted to a starting record number and a starting address within the record. This is accomplished by lines 39 through 43 and lines 53 through 58 (for channels 1 and 2 respectively), with the starting addresses stored in general-purpose registers R1 and R2.

Lines 60 and 61 of the program then examine bit 0 of the switch register to see if a doppler correction is to be made. If bit 0 is on (indicating a doppler correction), then the number of samples between address corrections is stored in DROP and DOPP, and the direction of the correction (retard or advance address by one) is stored in ANSWR.

The program now places the starting address of the output buffer in register R3 and sets the output-buffer counter register R4 to the size in words (one word is equivalent to two data samples) of the output buffer. The program then reads the first required data record for channels 1 and 2 into the buffers NPUT1 and NPUT2 respectively.

The program begins multiplexing the data channels into the output buffer. In line 84 a sample from channel 1 is moved from the channel 1 input buffer into the output buffer, and the two buffer pointers are incremented by 1. The process is repeated for channel 2 in line 85. The program then decrements the R4 counter by 1 and tests to see if the output buffer is full. If the buffer is full, the output buffer is written onto the magnetic tape and registers R3 (output-buffer pointer) and R4 (output-buffer counter) are reset.

Line 105 checks NOPOP to determine if a doppler correction is to be made. If so, the counter DROP is decremented by 1 and compared with zero. If DROP is zero, DROP is reset to DOPP and ANSWR is examined to determine whether a sample should be repeated or dropped. If a sample is to be repeated, the counter R2 is decremented by 1; and if a sample is to be dropped, R2 is incremented by 1 and the input buffer tested to determine if the channel-2 data have been exhausted. If the data have been exhausted, a new record is read into NPUT2.

This process continues until the program must access a record greater than the size of one of the input files (as specified by RECBL1 and RECBL2). Finally the most significant

bit of the switch register is checked. If it is on, the program recycles to generate a new file of multiplexed data with a new time register and/or a new doppler correction. Otherwise control is returned to the DOS monitor.

An example of the entries to the program is shown in Fig. A1. (This program produced the data tape for the phase-difference plots shown in Fig. 5.) The underlined portions are the entries entered by the operator. In the example the data inputs are six-digit ASCII numbers, each less than the decimal number 65,536. In addition the entry indicating that samples were to be dropped from the second channel was a four-digit ASCII entry SUB2. (If samples were to have been added, the entry would have been ADD2.)

(all sense switches down)

| \$RU DOPP12                                |        |
|--------------------------------------------|--------|
| LAST DATA RECORD FOR STATION 1             | 001250 |
| LAST DATA RECORD FOR STATION 2             | 001250 |
| NO. OF SAMPLES TO DROP FROM STATION-1 DATA | 026400 |
| NO. OF SAMPLES TO DROP FROM STATION-2 DATA | 026400 |
| (put sense switch 0 up)                    |        |
| NO. OF SAMPLES TO DROP FROM STATION-1 DATA | 026400 |
| NO. OF SAMPLES TO DROP FROM STATION-2 DATA | 026400 |
| NO. OF SAMPLES BETWEEN DOPPLER CORRECTIONS | 001595 |
| ADD OR SUB SAMPLES FROM CHANNEL 2? SUB2    |        |
| (put sense switch 15 up)                   |        |
| NO. OF SAMPLES TO DROP FROM STATION 1 DATA | 026532 |
| NO. OF SAMPLES TO DROP FROM STATION 2 DATA | 026400 |
| NO. OF SAMPLES BETWEEN DOPPLER CORRECTIONS | 001595 |
| ADD OR SUB SAMPLES FROM CHANNEL 2 SUB2     |        |

Fig. A1 - Example of a run of the multiplexing program

```
002 ; PROGRAM TO MULTIPLEX DATA
             .TITLE DOPPLR
                      .INIT, .RLSE, . WAIT, . OPEN, . CLUSE
             · MCALL
005
             · MCALL
                       .EXIT .. RECRD .. D2BIN .. TRAN .. RADPK
                      OPUTI, OPUT, OPUTF, OPUTD
006
             · GLOBL
             . INIT
007 START:
                      #DSKBL1
008
             · INIT
                      #DSKBL2
             . INIT
                      #KBBLK
009
010 ; OBTAIN NUMBER OF LAST RECORD IN FIRST FILE
                      #KBBLK, #TBLK1
             . TRAN
011
                      #KBBLK
012
             . WAIT
                      #KBBLK, #TRNBLK
#KBBLK
013
             . TRAN
014
             . WAIT
                      #DECNO+1
             . D2BIN
015
                       (SP)+, RECNOI
016
             MOV
                      RECN01
             DEC
017
018 ; OBTAIN NUMBER OF LAST RECORD IN SECOND FILE
                       #KBBLK, #TBLK2
019
             . TRAN
                       #KBBLK
             . WAIT
021
             . TRAN
                       #KBBLK, #TRNBLK
022
                       #KBBLK
              .DZBIN
                       #DECNO+1
             MOV
                       (SP)+, RECNO2
025
             DEC
                       RECNU2
726 ; INITIALIZE FILES
                      #DSKBL1, #FILNM1
027 BEGIN: . OPEN
                       #DSKBL2, #FILNM2
             . OPEN
029 JSR R5, OPUTI
030 ; OBTAIN NUMBER OF SAMPLES TO SKIP FOR
031 ; CHANNEL I
             . TRAN
                       #KBBLK, #TBLK3
032
033
              . WAIT
                       #KBBLK
034
             . TRAN
                       #KBBLK, #TRNBLK
                       #KBBLK
Ø35
Ø36
             . WAIT
              .D2BIN
                      #DECNO+1
037 ; STARTING RECORD NUMBER FOR FIRST FILE INTO RECBL1
038 ; ADDRESS OF FIRST SAMPLE INTO RI
             MOV
                       (SP)+,R1
             CLR
                       RØ
                       #512.,RØ
041
             DIV
042
             ADD
                       RØ. RECBL1+10
043
             ADD
                       #NPUT1,R1
044 ; OBTAIN NUMBER OF SAMPLES TO SKIP FOR
045 ; CHANNEL 2
046 • TRAN
                       #KBBLK, #TBLK4
              . WAIT
047
                       #KBBLK
048
              . TRAN
                       #KBBLK, #TRNBLK
```

```
· WAIT
050
              .D2BIN
                      #DECNO+1
051 ; STARTING RECORD NUMBER FOR SECOND FILE IN RECBL2
052 1 ADDRESS OF FIRST SAMPLE INTO R3
             MOV
                      (SP)+,R3
053
054
             CLR
                      R2
                      #512.,R2
R2,RECBL2+10
055
             DIV
056
             ADD
057
             MOV
                      R3. R2
             ADD
                      NPUT2, R2
       TEST TO SEE IF DOPPLR CURRECTIONS ARE TO BE MADE
059 1
060
             MOV
                      #SW, NODOP
             BIC
                      #177776, NODOP
062
             BEQ
063 ; OBTAIN NUMBER OF SAMPLES BETWWEN DOPPLER CORRECTIONS
             . TRAN
                      #KBBLK, #TBLK5
065
             · WAIT
                      #KBBLK
066
             . TRAN
                      #KBBLK, #TRNBLK
067
             . WAIT
                      #KBBLK
                      #DECNO+1
068
             . D2BIN
                      (SP)+,DOPP
969
             MOV
                      DOPP, DROP
             MOV
070
071 ; DROP OR ADD SAMPLES FROM CHANNEL 2?
                      #KBBLK, #TBLK6
             . TRAN
972
             . WAIT
                      #KBBLK
073
                      #KBBLK, #TRNBL1
             . TRAN
974
             . WAIT
                      #KBBLK
075
             · RADPK
                      #DECNO
             MOV
                      (SP)+, ANSWR
078 ; INPUT DATA
079 INIT:
             MOV
                      #OUT, R3
             MOV
                      #1000 .. R4
081
             JSR
                      R5. RED1
982
             JSR
                      R5. RED2
083 ; MULTIPLEX THE CHANNELS
                                      CHANNEL 1 SAMPLE INTO OUTPUT FILE
084 LOOP:
             MOVB
                      (R1)+,(R3)+
            MOVB
085
                     (R2)+, (R3)+
             DEC
086
                      R4
             BNE
                      CONT
                                        JOUTPUT BUFFER FULL?
087
                      R5, OPUT
088
             JSR
                                        ; YES
             BR
089
090
                      OUT
            MOV
                     #1000 .. R4
092
             MOV
                      #OUT.R3
093
             JSR
                      R5, OPUTD
094
             MOV
                      0#172520,R0
095
             BIC
                      #175777,RØ
096
             BNE
                      DONE
                                        JERROR IN WRITING?
097 CONT:
             CMP
                      R1, #NPUT1+512.
             BNE
098
                      NXT
                                        LAST SAMPLE IN CHANNEL 1 BUFFER?
099
             JSR
                      R5. RED1
                                        ; YES
                      #NPUT1.R1
100
             MOV
```

```
101 NXT:
             CMP
                     R2.#NPUT2+512.
102
             BNE
                     DOPPLR
                                       JLAST SAMPLE FOR CHANNEL 2 BUFFER?
103
             JSR
                     RS. RED2
                                       IYES
104
             MOV
                     #NPUT2, R2
105 DOPPLR: TST
                     NODOP
                                       DOPPLER CORRECTIONS USED?
106
            BEQ
                     LOOP
                     DROP
107
            DEC
                                       IYES
                                       MAKE A DOPPLER CORRECTION NOW?
                     LOOP
             BNE
108
                     DOPP, DROP
             MOV
                                       IYES
109
             CMP
                     ANSWR, ADD
110
111
             BNE
                     TWO
112
            DEC
                     R2
LOOP
                                       JADD A SAMPLE
             JMP
113
114 TWO:
             INC
                     R2
                                       DROP A SAMPLE
             CMP
                     R2. #NPUT2+512.
115
116
             BNE
                     LOOP
                                       JLAST SAMPLE FOR CHANNEL 2 BUFFER?
117
             JSR
                     R5. RED2
             MOV
                     #NPUT2.R2
118
             JMP
                     LOOP
120 ; READ DATA FOR CHANNEL 1
            CMP
                     RECBL1+10, RECNO1
121 RED1:
            BGT
                     DONE
                                       CHANNEL 1 DATA EXHAUSTED?
122
             . RECRD
                     #DSKBL1. #RECBL1 ; NO
123
             . WAIT
                     #DSKBL1
124
125
            MOV
                     RECBL1, RØ
126
             TSTB
                     RECBL1+1
127
             BNE
                     ERROR
128
            ADD
                     #1.RECBL1+10
129
            RTS
                     R5
130 ; READ DATA FOR CHANNEL 2
131 RED2:
            CMP
                     RECBL2+10, RECNO2
                                      CHANNEL 2 DATA EXHAUSTED?
             BGT
132
                     DONE
                     NPUT2+512., NPUT2-1
                                               INO
            MOVE
133
                     #DSKBL2. #RECBL2
             · RECRD
134
135
             . WAIT
                     *DSKBL2
136
            MOV
                     RECBL2. RØ
             TSTB
137
                     RECBL2+1
             BNE
                     ERROR
139
             ADD
                     #1.RECBL2+10
140
             RTS
                     R5
141 & PROCESSING DONE
141 ERROR: .TRAN
                     #KBBLK, #TBLK
             . WAIT
                     #KBBLK
143 DONE:
             CLR
                     RECBL 1+10
144
            CLR
                     RECBL2+10
145
             JSR
                     RS, OPUTF
146
             . CLOSE
                     #DSKBL1
147
             . CLOSE
                     #DSKBL2
                                       STEST BIT 15 OF SWITCH REGISTER
148
             TST
                     0 #SW
                                      JIF ON DONE
            BMI
149
                     FIN
```

```
150
                      BEGIN
             JMP
                                  JOTHERWISE GENERATE NEW MAG TAPE FILE
             . RLSE
151 FIN:
                      #KBBLK
                      #DSKBL1
             . RLSE
152
             . RLSE
              .EXIT
155 J DISK LINK BLOCK
156
             . WORD
157 DSKBL1: . WORD
158
             . RADSØ
                      /DIS/
159
             . WORD
160
             . RAD50
                      /DK/
161
             . WORD
162 DSKBL2: . WORD
163
             . RAD50
                      /DUS/
164
             . WORD
                      /DK/
165
             . RAD50
166 ; KEYBOARD LINK BLOCK
167
             . WORD
                      0.0.1
168 KBBLK:
             . WORD
169
             . RADSØ
                      /KB/
170 , RECORD BLOCK FOR FIRST CHANNEL
                      4, NPUT1, 512.,0.0
171 RECBL1: . WORD
172 ; RECORD BLOCK FOR SECOND CHANNEL
173 RECBL2: .WORD 4, NPUT2, 512
174; OUTPUT BLOCK FOR KEYBOARD
                      4. NPUT2, 512., 0.0
175 TBLK:
             . WORD
                      0.MESG. 4.2.0
176 TBLK1:
             . WORD
                      Ø, MESG1, 22., 2, 0
177 TBLK2:
             . WORD
                      0.MESG2,22.,2,0
178 TBLK3:
             . WORD
                      Ø, MESG3, 22., 2, 0
179 TBLK4:
             . WORD
                      0.MESG4,22.,2,0
180 TBLK5:
             . WORD
                      0.MESG5,22.,2.0
181 TBLK6:
             . WORD
                      0.MESG6, 17., 2,9
182 MESG:
             · ASCII
                      / ERROR/
             . BYTE
                      15,12
183
184 MESG1:
             · ASCII
                      /LAST DATA RECORD TO READ FOR STATION 1
185
             . EVEN
186 MESG2:
             · ASCII
                      /LAST DATA RECORD TO READ FOR STATION 2
187
             . EVEN
188 MESG3:
             · ASCII
                      /NO. OF SAMPLES TO DROP FROM STATION 1 DATA /
189
            . EVEN
190 MESG4:
                      /NO. OF SAMPLES TO DROP FROM STATION 2 DATA /
             · ASCII
191
             . EVEN
192 MESG5:
             .ASCII
                      /NO. OF SAMPLES BETWEEN DOPPLER CORRECTIONS /
193
             . EVEN
194 MESG6:
             · ASCII
                      /ADD OR SUB SAMPLES FROM CHANNEL 2? /
196 ADD:
             . RAD50
197 J TRAN BLOCK FOR KEYBOARD
198 TRNBLK: . WORD
                      Ø, DECNO, 4., 5, 0
199 TRNBL1: . WORD
                      0. DECNO, 3, 4, 0
```

```
200 ; FILENAME FOR FIRST CHANNEL
201
             . WORD
                      0.1
202 FILNM1: . RAD50
                      /STANOIDAT/
             . WORD
                      0.233
203
204
      FILENAME FOR SECOND CHANNEL
             . WORD
205
                      0.1
206 FILNM2: . RAD50
                      /STANO2DAT/
207
             . WORD
                      0,233
208 : STORAGE AREAS
209 ANSWR:
210 DOPP:
211 DROP:
             . WORD
212 RECN01:
            . WORD
213 RECN02:
            . WORD
214 OUT:
             . BLKW
                      1000.
215 DECNO:
             . BLKW
216 NPUT1:
             . BLKW
                      256.
217
             . WORD
218 NPUT2:
             . BLKW
                      256.
             . WORD
219 NODOP:
             . END
220
                      START
```

```
002 ; OPUTI - INITIALIZATION FOR OUTPUT
003 : OPUT - OUTPUTS A RECORD TO 7 TRACK MAG TAPE (556 BPI)
005 ; OPUTF - CLOSES FILE
006
              .TITLE
                       OUTPUT
007
              . MCALL
                       · INIT, · TRAN, · WAIT, · RLSE, · SPEC
008 OPUTI::
             · INIT
                       #MAGBLK
009
              . SPEC
                       #MAGBLK, #SFBLK
010
              RTS
                       R5
011 OPUT::
             MOV
                       R1,-(SP)
012
             MOV
                       RØ, - (SP)
013
             MOV
                       2(R5), TRNBLK+2
014
             MOV
                       TRNBLK+2.R1
015
             MOV
                       #2000 . . RO
016 LOOP:
             ASRB
                       (R1)
017
             ASRB
                       (R1)+
                       RØ.LOOP
#MAGBLK.#TRNBLK
018
             SOB
919
              . TRAN
             MOV
                       (SP)+, RØ
020
                       (SP)+,R1
021
             MOV
022
             RTS
                       R5
023 OPUTD:: .WAIT
                       #MAGBLK
             RTS
024
                       R5
025 OPUTF::
             . SPEC
                       #MAGBLK, #SFBLK1
026
                       #MAGBLK
              · RLSE
027
              RTS
                       R5
028 SFBLK:
              . BYTE
                       6.3
029
              . WORD
                       0.1
030
              . BYTE
031
              . WORD
032 SFBLK1:
             . BYTE
                       2,3
033
              . WORD
034
              . WORD
035 MAGBLK:
              . WORD
              . RAD50
                       /MAG/
037
              BYTE
                       /MT/
              - RADSØ
                       0.0.1000.,2,0
039 TRNBLK:
              . WORD
              . END
```